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Autistic-like social behaviour in Shank2-mutant
mice improved by restoring NMDA receptor function
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Autism spectrum disorder (ASD) is a group of conditions charac-
terized by impaired social interaction and communication, and
restricted and repetitive behaviours. ASD is a highly heritable
disorder involving various genetic determinants1. Shank2 (also
known as ProSAP1) is a multi-domain scaffolding protein and
signalling adaptor enriched at excitatory neuronal synapses2–4,
and mutations in the human SHANK2 gene have recently been
associated with ASD and intellectual disability5. Although ASD-
associated genes are being increasingly identified and studied
using various approaches, including mouse genetics6–16, further
efforts are required to delineate important causal mechanisms with
the potential for therapeutic application. Here we show that Shank2-
mutant (Shank22/2) mice carrying a mutation identical to the
ASD-associated microdeletion in the human SHANK2 gene exhibit
ASD-like behaviours including reduced social interaction, reduced
social communication by ultrasonic vocalizations, and repetitive
jumping. These mice show a marked decrease in NMDA (N-methyl-
D-aspartate) glutamate receptor (NMDAR) function. Direct stimu-
lation of NMDARs with D-cycloserine, a partial agonist of NMDARs,
normalizes NMDAR function and improves social interaction in
Shank22/2 mice. Furthermore, treatment of Shank22/2 mice with a
positive allosteric modulator of metabotropic glutamate receptor 5
(mGluR5), which enhances NMDAR function via mGluR5 activa-
tion17, also normalizes NMDAR function and markedly enhances
social interaction. These results suggest that reduced NMDAR func-
tion may contribute to the development of ASD-like phenotypes in
Shank22/2 mice, and mGluR modulation of NMDARs offers a
potential strategy to treat ASD.

Mutations in the SHANK2 gene have recently been identified in indi-
viduals with ASD and intellectual disability5,18. Among these mutations,
one de novo SHANK2 microdeletion found in ASD leads to loss of exons
6 and 7 and a frame shift, with concomitant removal of the PDZ and
following domains in SHANK2 proteins. To explore the possibility that
this deletion causes ASD in humans, and to study the mechanisms
underlying the development of ASD, we generated transgenic mice
carrying a mutation identical to the human microdeletion (exons 6
and 7 deletion and a frame shift), which affects both splice variants of
Shank2 (Shank2a and Shank2b) in mice (Fig. 1a). The deletion was
verified by Southern blotting and various PCR methods (Supplemen-
tary Fig. 1). Shank2 proteins were undetectable in the brain (Fig. 1b), and
there were no compensatory increases in Shank1 or Shank3
(Supplementary Fig. 1). The Shank22/2 mice showed normal reproduc-
tion and brain structure (Supplementary Fig. 2).

We first examined whether Shank22/2 mice displayed autistic-like
impairments in social interaction. In a home-cage social interaction

assay, Shank22/2 mice showed reduced interaction with normal target
mice, as compared with wild-type animals (Supplementary Fig. 3). In a
three-chamber social interaction assay, wild-type animals preferred to
explore the first novel mouse introduced (stranger 1) over an inan-
imate object relatively more than did Shank22/2 mice (Fig. 1c, d and
Supplementary Fig. 4). Next, when the object was replaced by another
novel mouse (stranger 2), Shank22/2 mice preferred to explore
stranger 2 over stranger 1, similar to wild-type animals (Fig. 1e),
indicative of normal levels of social novelty recognition. Similar
results were obtained when we used juvenile Shank22/2 mice
(Supplementary Fig. 5). Shank22/2 mice had normal olfactory func-
tion (Supplementary Fig. 6).

Shank22/2 mice showed impaired spatial learning and memory in
the Morris water maze, although novel object recognition memory was
normal (Supplementary Fig. 7). These results suggest that Shank22/2

mice have partially impaired learning and memory, consistent with the
idea that the deletion in exons 6 and 7 in humans causes ASD and mild
to moderate intellectual disability5.

Shank22/2 mice showed impairments in social communication by
ultrasonic vocalizations (USVs). When allowed to interact with a novel
wild-type female mouse, Shank22/2 male mice uttered USVs less fre-
quently than did wild-type animals, and took longer to make the first
call (Fig. 1f–h). In a pup retrieval assay, Shank22/2 female mice
retrieved the pups less efficiently than did wild-type mice (Fig. 1i and
Supplementary Fig. 8, Supplementary Movies 1 and 2).

Shank22/2 male animals exhibited other autistic-like abnormalities.
When kept alone in stranger-free home cages, Shank22/2 mice
showed enhanced jumping mostly mixed with upright scrabbling,
normal grooming, and decreased digging behaviours (Fig. 1j and
Supplementary Movies 3–5). Shank22/2 mice also displayed impaired
nesting behaviour, hyperactivity in assays including the open field test,
anxiety-like behaviour in an elevated plus maze, and increased groom-
ing in a novel object recognition arena (Supplementary Figs 4, 6 and 7).
Shank22/2 female mice showed similar repetitive jumping, hyperac-
tivity in an open field, and anxiety-like behaviour in an elevated plus
maze, although not in a light-dark box (Supplementary Fig. 8). These
data collectively suggest that Shank22/2 mice show ASD-like beha-
viours. It should be noted that the hyperactivity and anxiety-like beha-
viours might contribute to the impaired social interaction in
Shank22/2 mice by limiting target exploration or evoking anxiety-like
responses.

We also characterized heterozygous Shank2 (Shank21/2) mice,
because human gene mutations are mostly heterozygotic. Shank21/2

mice showed hyperactivity, similar to Shank22/2 mice (Supplementary
Fig. 9). However, they showed no abnormalities in social interaction,
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repetitive behaviours, or anxiety-like behaviours, reflecting intrinsic
differences between humans and mice.

Shank2 is an important regulator of excitatory synaptic structure
and function2–4,19. Shank2 deletion, however, had minimal effects on
excitatory or inhibitory synapses (Supplementary Fig. 10). In addition,
electron microscopy revealed that excitatory synapse number and
postsynaptic density morphology were unaltered (Supplementary
Fig. 11).

We next measured synaptic transmission at hippocampal Schaffer-
collateral–CA1-pyramidal (SC–CA1) synapses. Basal excitatory trans-
mission such as input–output and paired-pulse ratio was unchanged in
Shank22/2 mice (Fig. 2a, b). In addition, spontaneous transmission
and membrane excitability were normal in mutant animals (Sup-
plementary Fig. 12). When synaptic plasticity was tested, long-term
potentiation (LTP) induced by high-frequency stimulation or theta-
burst stimulation was severely impaired in Shank22/2 mice (Fig. 2c
and Supplementary Fig. 13). Long-term depression (LTD) induced
by low-frequency stimulation was completely abolished also in
Shank22/2 mice (Fig. 2d). Because LTD induced by low-frequency
stimulation activates both NMDARs and mGluRs20, we isolated
mGluR LTD by bath-applying (RS)-3,5-dihydroxyphenylglycine
(DHPG), an agonist of mGluR5, but found no difference between
genotypes (Supplementary Fig. 13). This suggests that the observed
reductions in LTP and LTD may be due to NMDAR hypofunction.

We thus measured the NMDA/AMPA (a-amino-3-hydroxy-5-
methyl-4-isoxazole propionic acid) ratio at Shank22/2 SC–CA1
synapses. Indeed, the NMDA/AMPA ratio was reduced relative to
wild-type synapses (Fig. 2e). Meanwhile, both the decay kinetics of
NMDAR excitatory post-synaptic currents (EPSCs) and GluN2B-
mediated EPSCs (GluN2B also known as NR2B or Grin2b) were indis-
tinguishable between genotypes, suggesting that GluN2A- (also
known as NR2A or Grin2a) and GluN2B-containing NMDARs were
equally affected (Supplementary Fig. 14). Given that AMPA receptor
(AMPAR)-mediated transmission is normal (Fig. 2a), these results
suggest that NMDAR-mediated transmission is selectively decreased.

The NMDA/AMPA ratio in the medial prefrontal cortex, however,
was unaltered in Shank22/2 mice (Supplementary Fig. 14), suggesting
that the reduced NMDA/AMPA ratio is not a change uniformly occur-
ring in all brain regions.

Shank2 deletion may also affect NMDAR-associated signalling that
critically regulates various synaptic events including LTP and LTD21,22.
In immunoblot analyses, phosphorylation but not total levels of
CaMKII-a/b (T286), ERK1/2 (p42/44) and p38 were significantly
reduced in the Shank22/2 brain (Supplementary Fig. 15). A similar
decrease was observed in phosphorylation of the AMPAR subunit
GluA1 (S831 and S845). There were no changes in phosphorylation
of PAK1/3 and mTOR, total levels of glutamate receptors (GluN2A,
GluA2 (also known as GluR2 or Gria2) and mGluR1/5 (also known as
Grm1/5)), or total levels of synaptic scaffolds and signalling adaptors/
proteins directly or indirectly associated with Shank2 including PSD-
95 (also known as Dlg4), SAP97 (also known as Dlg1), GKAP (also
known as Dlgap1), SynGAP1, Homer1, Arhgef6/7 (also known as
a/bPIX), GIT1 and PLC-b3. The increase in GluN1 expression may
reflect a compensatory increase. These results suggest that Shank2
deficiency leads to impairments in NMDAR-associated signalling.

Reduced NMDAR function and associated signalling may con-
tribute to ASD-like behaviours in Shank22/2 mice. To test this hypo-
thesis directly and restore NMDAR function, we used D-cycloserine, a
partial agonist at the glycine-binding site of NMDARs, which has been
shown to rescue repetitive grooming in neuroligin-1-deficient mice
associated with a reduced NMDA/AMPA ratio23. We found that
D-cycloserine fully recovered the NMDA/AMPA ratio (Fig. 3a). In addi-
tion, D-cycloserine-treated Shank22/2 mice showed improved social
interaction in three-chamber social interaction assays (Fig. 3b–d and
Supplementary Fig. 16).

To explore further the association between reduced NMDAR
function and ASD-like behaviours in Shank22/2 mice, we used
3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB), a
membrane-permeable positive allosteric modulator of mGluR5, which
increases the responsiveness of mGluR5 to glutamate and enhances
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Figure 1 | Shank22/2 mice exhibit ASD-like impaired social interaction and
social communication, and repetitive jumping. a, Targeting of the Shank2
gene in mice. Ex, exon. b, Shank22/2 brain lacks expression of both Shank2a
and Shank2b splice variants. Mo, mock; S2, Shank2; S2E, epithelial form of
Shank2. c–e, Impaired social interaction of Shank22/2 mice in three-chamber
assays. KO, knockout; WT, wild type. d, Social preference (object versus

stranger 1 (S1–O)). e, Social novelty recognition (stranger 1 versus stranger 2
(S2–S1)). n 5 11 (WT), 10 (KO). f–h, Impaired social communication by USVs
in Shank22/2 mice. n 5 10 (WT), 10 (KO). i, Impaired pup retrieval in
Shank22/2 mice. n 5 5 (WT), 5 (KO). j, Stereotypical behaviours in Shank22/2

mice. n 5 11 (WT), 11 (KO). *P , 0.05, **P , 0.01, ***P , 0.001, NS, not
significant. Data represent mean 6 standard error.
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NMDAR function17,24,25. CDPPB has antipsychotic and pro-cognitive
activities17,24,26–28, and facilitates behavioural flexibility29. In addition,
CDPPB restores reduced excitatory transmission and ERK phosphor-
ylation caused by Shank3 knockdown25, and CDPPB and its derivative
(VU-29) enhance both LTP and LTD, and spatial learning27.

Consistent with previous findings, CDPPB also normalized the
NMDA/AMPA ratio in Shank2–/– brain slices (Fig. 4a). Moreover,
CDPPB restored the impaired LTP and LTD at SC–CA1 synapses
(Fig. 4b, c), without affecting basal synaptic transmission (Supplemen-
tary Fig. 17). Biochemically, CDPPB treatment of Shank22/2 mice
fully normalized NMDAR signalling in Shank2–/– whole brains and
also in Shank2–/– synaptosomes (Supplementary Figs 18). The smaller

extent of signalling deficits in older mice (8 weeks) relative to younger
mice (3–4 weeks) may reflect age-dependent reductions in NMDAR-
mediated currents and/or compensatory changes in NMDAR signalling.

Behaviourally, Shank22/2 mice treated with CDPPB showed sub-
stantial recoveries in social interaction to a greater extent than those
treated with D-cycloserine, while having no effect on social novelty
recognition (Fig. 4d–f and Supplementary Fig. 19). A lower dose of
CDPPB did not rescue impaired social interaction (Supplementary
Fig. 20), indicative of a dose-dependent action. Notably, CDPPB did
not rescue impaired pup retrieval, repeated jumping, anxiety-like
behaviours and hyperactivity (Supplementary Fig. 21), suggesting that
CDPPB selectively rescues social interaction, but not other behaviours.
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These results, together with the D-cycloserine results, suggest that
reduced NMDAR function and signalling lead to impaired social inter-
action in Shank2–/– mice, although NMDAR-independent mechan-
isms may also have a role.

Recently, another line of Shank2–/– mice produced by deleting exon 7
has been reported to display multiple phenotypes, including reduced
spine number, reduced basal transmission, elevated NMDAR currents
and ASD-like behavioural changes30. Given that our Shank2–/– mice
lack both exons 6 and 7, the observed differences in mouse phenotype
might reflect the differences in genetic deletions and are in line with the
different ASD symptoms observed in humans5. In addition, the fact
that both reduced and enhanced NMDAR functions lead to the same
ASD-like phenotypes in mice suggest that maintaining normal levels of
NMDAR function is important.

We have demonstrated that NMDAR function is an important
mechanism underlying the development and rescue of ASD-like
phenotypes in Shank22/2 mice, and that mGluR5 may be a novel
target for the treatment of ASD involving altered NMDAR function.

METHODS SUMMARY
Animals and statistical analysis. Numbers, genders and ages of mice used for
behavioural and other assays are summarized in Supplementary Table 1. All
behavioural and electrophysiological assays were performed and analysed in a
blind manner. Statistical analyses were performed using SPSS 12.0 (SPSS) and
OriginPro (OriginLab), and details of the results are described in Supplementary
Table 2.

Experimental details of mouse generation and characterization by behavioural,
electrophysiological, biochemical and immunohistochemical analyses are
described in Supplementary Methods.
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Figure 4 | CDPPB normalizes NMDAR function and substantially
improves social interaction in Shank22/2 mice. a, CDPPB (10mM) restores
the NMDA/AMPA ratio at Shank22/2 SC–CA1 synapses. n 5 13 (wild type,
vehicle (WT-V)), 8 (wild type, CDPPB (WT-C)), 9 (knockout, vehicle (KO-V)),
9 (knockout, CDPPB (KO-C)). b, c, CDPPB (10 mM) recovers impaired LTP
and LTD. n 5 5 (WT-V), 5 (WT-C), 5 (KO-V), 6 (KO-C) for high-frequency

stimulation LTP, and n 5 5 (WT-V), 6 (WT-C), 7 (KO-V), 6 (KO-C) for low-
frequency stimulation LTD. d–f, Shank22/2 mice treated with CDPPB
(10 mg kg21) show substantially improved social interaction in three-chamber
assays. e, f, Quantification of the results in d. n 5 8 (WT-V), 8 (WT-C), 9 (KO-
V), 9 (KO-C). *P , 0.05, **P , 0.01, ***P , 0.001, NS, not significant. Data
represent mean 6 standard error.
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